Improved OT Extension for Transferring Short Secrets and Application to Secure Multi-Party Computation
ثبت نشده
چکیده
We propose an optimization and generalization of OT extension of Ishai et al. of Crypto 2003. For computational security parameter k, our OT extension for short secrets o↵ers O(log k) factor performance improvement in communication and computation, compared to prior work. In concrete terms, for today’s security parameters, this means approx. factor 2-3 improvement. This results in corresponding improvements in applications relying on such OT. In particular, for two-party semi-honest SFE, this results in O(log k) factor improvement in communication over state of the art Yao Garbled Circuit, and has the same asymptotic complexity as the recent multi-round construction of Kolesnikov and Kumaresan of SCN 2012. For multi-party semihonest SFE, where their construction is inapplicable, our construction implies O(log k) factor communication and computation improvement over best previous constructions. As with our OT extension, for today’s security parameters, this means approximately factor 2 improvement in semi-honest multi-party SFE. Our building block of independent interest is a novel IKNP-based framework for 1-out-of-n OT extension, which o↵ers O(log n) factor performance improvement over previous work (for n k), and concrete factor improvement of up to 9 for today’s security parameters (n=k=128). Our protocol is the first practical OT with communication/computation cost sublinear in the security parameter (prior sublinear constructions Ishai et al. [IKOS08, IKOS09] are not e cient in concrete terms).
منابع مشابه
Improved OT Extension for Transferring Short Secrets
We propose an optimization and generalization of OT extension of Ishai et al. of Crypto 2003. For computational security parameter k, our OT extension for short secrets offers O(log k) factor performance improvement in communication and computation, compared to prior work. In concrete terms, for today’s security parameters, this means approx. factor 2-3 improvement. This results in correspondin...
متن کاملFast Actively Secure OT Extension for Short Secrets
Oblivious Transfer (OT) is one of the most fundamental cryptographic primitives with wide-spread application in general secure multi-party computation (MPC) as well as in a number of tailored and special-purpose problems of interest such as private set intersection (PSI), private information retrieval (PIR), contract signing to name a few. Often the instantiations of OT require prohibitive comm...
متن کاملMore Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries
Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party computation. As secure computation becomes more practical, the need for practical large scale oblivious transfer protocols is becoming more evident. Oblivious transfer extensions are protocols that enable a relatively small number of “base-OTs” t...
متن کاملOn Cut-and-Choose Oblivious Transfer and Its Variants
Motivated by the recent progress in improving efficiency of secure computation, we study cut-and-choose oblivious transfer—a basic building block of state-of-the-art constant round two-party secure computation protocols that was introduced by Lindell and Pinkas (TCC 2011). In particular, we study the question of realizing cut-and-choose oblivious transfer and its variants in the OT-hybrid model...
متن کاملComputationally secure multiple secret sharing: models, schemes, and formal security analysis
A multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants. in such a way a multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants, such that any authorized subset of participants can reconstruct the secrets. Up to now, existing MSSs either require too long shares for participants to be perfect secur...
متن کامل